摘 要: 无线电力传输是一种传输电力的新技术,它将电力通过电磁耦合、射频微波、激光等载体进行传输。这种技术解除了对于导线的依赖,从而得到更加方便和广阔的应用。本文就无线电力传输的发展历史和基本原理做了一些介绍,并对其未来可能的应用做了一些探讨。
关键词: 无线电力传输技术 电磁感应 射频 原理与应用前景
1.引言
自17世纪人类发现如何发电后就用金属电线来四处传输电力。时至今日,供电网、高压线已遍布全球的角角落落。在工作和生活中,越来越多的电器给我们带来极大便捷的同时,不知不觉各种“理不清”的电源线、数据线带来的困扰也与日俱增。不过,这些年的科技发展表明,在无线数据传输技术日益普及之时,科学家对无线电力传输(Wireless Power Transmission,WPT)的研究也有了很大突破,从某种意义上来讲,无线电力传输也不再是幻想——在未来的生活中摆脱那些纷乱的电源线已成为可能。
2.无线电力传输的发展历史
19世纪末被誉为“迎来电力时代的天才”的名尼古拉·特斯拉(Nikola Tesla,1856—1943)在电气与无线电技术方面作出了突出贡献。他1881年发现了旋转磁场原理,并用于制造感应电动机;1888年发明多相交流传输及配电系统;1889—1890年制成赫兹振荡器;1891年发明高频变压器(特斯拉线圈),现仍广泛用于无线电、电视机及其他电子设备。他曾致力于研究无线传输信号及能量的可能性,并在1899年演示了不用导线采用高频电流的电动机,但由于效率低和对安全方面的担忧,无线电力传输的技术无突破性进展[1]。1901—1905年在纽约附近的长岛建造Wardenclyffe塔,是一座复杂的电磁振荡器,设想它将能够把电力输送到世界上任何一个角落,特斯拉利用此塔实现地球与电离层共振。
2001年5月,法国国家科学研究中心的皮格努莱特,利用微波无线传输电能点亮40m外一个200W的灯泡。其后,2003年在岛上建造的10kW试验型微波输电装置,已开始以2.45GHz频率向接近1km的格朗巴桑村进行点对点无线供电。
2005年,香港城市大学电子工程学系教授许树源成功研制出“无线电池充电平台”,但其使用时仍然要将产品与充电器接触。
2006年10月,日本展出了无线电力传输系统。此系统输出端电力为7V、400mA,收发线圈间距为4mm时,输电效率最大为50%,用于手机快速充电。
2007年6月,美国麻省理工学院的物理学助理教授马林·索尔贾希克研究团队实现了在短距离内的无线电力传输。他们给一个直径60厘米的线圈通电,6英尺(约1.83米)之外连接在另一个线圈上的60瓦的灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”。
2008年9月,北美电力研讨会发布的论文显示,他们已经在美国内华达州的雷电实验室成功地将800W电力用无线的方式传输到5m远的距离。
2009年10月,日本奈良市针对充电式混合动力巴士进行了无线充电实验。供电线圈埋入充电台的混凝土中,汽车驶上充电台,将车载线圈对准供电线圈就能开始充电。
3.无线电力传输的基本原理
3.1电磁感应——短程传输
电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系与转化。电磁感应是电磁学中的基本原理,变压器就是利用电磁感应的基本原理进行工作的。利用电磁感应进行短程电力传输的基本原理如图1所示,发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。若线圈L1中通已交变电流,该电流将在周围介质中形成一个交变磁场,线圈L2中产生的感应电势可供电给移动设备或者给电池充电。
3.2电磁耦合共振——中程传输
中程无线电力传输方式是以电磁波“射频”或者非辐射性谐振“磁耦合”等形式将电能进行传输。它基于电磁共振耦合原理,利用非辐射磁场实现电力高效传输。在电子学的理论中,当交变电流通过导体,导体的周围会形成交变的电磁场,称为电磁波。在电磁波的频率低于100khz时,电磁波就会被地表吸收,不能形成有效的传输,当电磁波频率高于100khz时,电磁波便可以在空气中传播,并且经大气层外缘的电离层反射,形成较远距离传输能力,人们把具有较远距离传输能力的高频电磁波称为射频(即:RF)。将电信息源(模拟或者数字)用高频电流进行调制(调幅或者调频),形成射频信号后,经过天线发射到空中;较远的距离将射频信号接收后需要进行反调制,再还原成电信息源,这一过程称为无线传输。中程传输是利用电磁波损失小的天线技术,并借助二极管、非接触IC卡、无线电子标签,等等,实现效率较高的无线电力传输。
具体来说,整个装置包含两个线圈,每一个线圈都是一个自振系统。其中一个是发射装置,与能量相连,它并不向外发射电磁波,而是利用振荡器产生高频振荡电流,通过发射线圈向外发射电磁波,在周围形成一个非辐射磁场,即将电能转化为磁场。当接收装置的固有频率与收到的电磁波频率相同时,接收电路中产生的振荡电流最强,完成磁场到电能的转换,从而实现电能的高效传输。图2是一个典型的利用电磁共振来实现无线电力传输的系统方案。电磁波的频率越高其向空间辐射的能量就越大,传输效率就越高。
3.3微波/激光——远程传输
理论上讲,无线电波的波长越短,其定向性越好,弥散就越小。所以,可以利用微波或激光形式来实现电能的远程传输,这对于新能源的开发利用、解决未来能源短缺问题也有着重要意义。1968年,美国工程师彼得格拉提出了空间太阳能发电(Space Solar Power,SSP)的概念。其构想是在地球外层空间建立太能能发电基地,通过微波将电能送回地球。
4.无线电力技术的应用前景
无线电力传输作为一种先进的技术一般应用于特殊的场合,具有广泛的应用前景。
4.1给一些难以架设线路或危险的地区供应电能
高山、森林、沙漠、海岛等地的台站经常遇到架设电力线路困难的问题,而工作在这些地方的边防哨所、无线电导航台、卫星监控站、天文观测点等需要生活和工作用电,无线输电可补充电力不足。此外,无线输电技术还可以给游牧等分散区村落无变压器供电和给用于开采放射性矿物、伐木的机器人供电。
4.2解决地面太阳能电站、水电站、风力电站、原子能电站的电能输送问题
我国的新疆、西藏、青海等地降雨量少、日照充足且存在大片荒芜土地,南方部分地区水力、风力资源丰富,这些地区有利于建造地面太阳能发电站或水电站、风力电站。可是,这些地区人烟稀少、地形复杂,在崇山峻岭之中难以架设线路,这时无线输电技术就有了用武之地。采用无线输电技术,还可以把核电站建在沙漠、荒岛等地。这样一方面便于埋葬核废料,另一方面当电站运行发生故障时也可以避免对周围动植物的大量伤害和耕地的污染。
4.3传送卫星太阳能电站的电能
所谓卫星太阳能电站,就是用运载火箭或航天飞机将太阳能电池板或太阳能聚光镜等材料发送到赤道上空35800km的地球静止同步轨道上。在太空的太阳光线没有地球大气层的影响,辐射能量十分稳定,是“取之不尽”的洁净能源。并且一年中有99%的时间是白天,其利用效率比地面上要高出6—15倍[3]。在那里利用太阳能电池板把阳光直接转变为电能,或者用太阳能聚光镜把阳光汇聚起来作为热源,像地面热电厂一样发电。这样产生的电能供给微波源或激光器,然后采用无线输电技术将大功率电磁射束发送至地面,接收到的微波能量经整流器后变成直流电,由变、配电设施供给用户。
4.4无接点充电插座
随着无线电力技术的发展,一些小型用电设备已经实现了无线供电。如:电动牙刷、“免电池”无线鼠标、无线供电“膜片”/“垫”等。无线供电“膜片”/“垫”是一种家用电器无线供电方式,用一片图书大小的柔软塑料膜片就可对家电进行无线供电,可为圣诞树上的LED、装饰灯、鱼缸水中的灯泡、小型电机、手机、MP3、随身听、温度传感器、助听器、汽车零部件、甚至是植入式医疗器件等供电。
4.5给以微波发动机推进的交通运输工具供电
现在大部分交通运输工具燃烧石油产品,其发动机叫做柴油发动机、汽油发动机等。与此类比,以微波作为能源推进的发动机叫做微波发动机。微波是工作频率在0.3—300GHz的电磁波,不能直接用它来驱动电动机,因为要设计出在如此高的频率下工作的发动机非常困难。如果思路加以改变,把微波能量转变为直流电流的整流器,那么微波就可以直接作为交通工具的能源了。煤、石油、天然气的存储量有限,而日消耗量巨大,总有耗尽之日,到那时卫星太阳能电站可望成为能源供给的主干,通过无线输电技术就可以直接把微波能量输给交通运输工具。
4.6在月球和地球之间架起能量之桥
世界人口的不断增长和地球资源的日益耗尽,太阳系中其他星球的开发利用是人类一直以来的夙愿。月球是地球的天然卫星,其上资源丰富,地域辽阔,是首先要开发的星体。未来人类对月球的利用主要是移民和资源获取。月球的土壤里富含SiO2,是制造太阳能电池的原料。如果先在月球上建立起工厂,然后把太阳能电站直接建在月球上,比起建在地球静止同步轨道上要容易些,借助于微波束或激光束把电能发送到地球。
5.结语
随着无线电力传输技术的不断发展与成熟,不但使人们未来的生活有望摆脱手机、相机、 笔记本 电脑等移动设备电源线的束缚,享受在机场、车站、酒店多种场所提供的无线电力,而且可用于一些特殊场合,如人体植入仪器如心脏起搏器等的输电问题、新能源(电动)汽车、低轨道军用卫星、太阳能卫星发电站等。在世界经济迅速发展的今天,节能和新的、可再生能源的开发是摆在能源工作者面前的首要问题。太阳能是取之不尽、用之不竭的干净能源。除核能、地热能和潮汐能之外,地球上的所有能源都来自太阳,建造卫星太阳能电站是解决人类能源危机的重要途径。要将相对地球静止的同步轨道上的电能输送的地面,无线输电技术将发挥至关重要的作用。从长远来看,该技术具有潜在的广泛应用前景。但是,每一种无线传输方式,都有一系列问题需要解决,如电能传输效率问题,电力公司如何收费和计费,能量传输所产生的电磁波是否对人体健康带来危害,等等。不管怎样,一旦这项技术能够普及,就会给人们的生活带来巨大的便利。
参考文献:
[1]白明侠,黄昭.无线电力传输的历史发展及应用[J].湘南学院学报,2010,31,(5):51-53.
[2]刘永军.无线电力传输技术:创造未来空间神话[J].中国电子商情(基础电子),2008,11:70-75.
电也是可以无线传输的。无线传输数据某种程度上也是一种电传输,但是传输的“电”的功率不大。通常在无线数据传输接收端都需要供电,去放大接收到的信息,因此传输数据时需要的能量并不需要很大。无线电的传输难点不在协议,而是大容量的无线电传输。
无线充电技术由来已久,而对普通消费者来说,无线充电看上去还是十分神奇的,那么无线充电是什么原理呢
🔌电流转换为磁场
无线充电基本原理,就是将电流转换为磁场,磁场通过空气传输后又转换成电流输送给智能终端。
🔋电池充电
经过电源管理模块后输出的直流电通过2M有源晶振逆变转换成高频交流电供给初级绕组。通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。
📡三种传输方式
无线充电大概有三种传输方式:电磁感应式、无线电波式、磁场共振式。三种方式各有所长,其中无线电波式由于功率低、能耗高、可行性差,不被看好。从消费市场来看,通常被提到的无线充电产品一般采用电磁感应式和磁场共振式。
你说的电力应该指的是强电,但目前的技术尚不能无线传送
仍需要输电线路(架空线或电缆线)来传输
这项名为“WiTricity”的技术是以“共振”为基础,就像我们中学物理学过的声波共振一样:两个频率相同的音叉放在相隔不远的地方,其中一个被敲击时,另一个就会因共振效应而跟着振动起来。而研究人员发现电磁效应在理论上也有同样的性质:先将能量囤积在发送端,而共振频率相同的接受端靠近时,这些能量就会透过共振效应,从而将电流传送到接收端,最终实现电力的无线传播。
未来在最新的网络版《科学》杂志上,美国的科学家们创造了“无线电力(WiTricity)”这个新词。他们相信将在3到5年的时间内研发一套系统,可为手提电脑、移动电话以及其他设备进行无线充电。一旦实现这种无线电力传输,就意味着一些小装置可以永久地摆脱电池的束缚,从而杜绝因废弃电池带来的环境污染。然而,在这项实验中,高达45%的能量在传输至灯泡的途中损耗掉了。索尔贾希克教授表示,尽管以后可以对铜线圈进行精简,但该系统的供电效能仅为普通化学电池的一半,而且进行电力传输的铜线圈有2英尺之高。一旦科学家们找到为手提电脑乃至电灯等设备进行无线充电的途径后,插头和电线就将从我们的生活中消失。 科学家称,对于无线电力传输产生的微波,人们感到担心是完全没有必要的,如果其微波射向宽广的区域,则毫无危险可言。就象是我们将手放入工作中的微波炉中,手当然会被烧伤,但如果将微波炉门打开,人站在离其3米以外就不会受到任何伤害。就像电灯一样,用手去触摸亮着的灯泡会感到灼热,但并不妨碍人们在灯下阅读报纸。根据科学界达成的协议,2.45千兆赫兹的频率主要用于未来的电力传输,该频率可使能量轻易穿过大气层,随后其能量将最终转变成高压直流电源。无线电力传输的工程规模巨大,不亚于当年巴拉马运河的开凿和英吉利海底隧道的建造。
一、无线通信技术概述
目前主流的无线传输技术可分为:高功耗、高速率的广域网传输技术(2G/3G/4G蜂窝通信技术、微波调制传输等);低功耗、低速率的广域网传输技术(Lora、Sigfox、NB-IoT等);高功耗、高速率的近距离传输技术(WIFI、蓝牙等);低功耗、低速率的近距离传输技术(ZigBee)。
在以无人区输电线路视频回传为主要业务需求的场景下,窄带和近距离传输的物联网无线技术并不适用该场景。目前主流的无线视频监控技术有WLAN(无线局域网)、模拟微波调制技术、4G/5G移动物联网技术、卫星通信技术。各技术的特性分析如下:
(1)WLAN(无线局域网)
WLAN(无线局域网)与一般传统的以太网(Ethernet)的概念并没有多大的差异,只是将以太网的线路传输部分(普通网卡--五类线--普通HUB)转变成无线传输形式(无线网卡--微波—AP,AP可理解为无线HUB),也可以说是双向通讯的数字微波通信。
(2)模拟微波调制技术
模拟微波调制技术是将视频信号直接调制在微波的通道上,通过天线发射出去,监控中心通过天线接收微波信号,再通过微波接收机解调出原来的视频信号。此种监控方式没有压缩损耗,几乎不会产生延时,因此可以保证视频质量,但其只适合点对点单路传输,不适合规模部署,此外因没有调制校准过程,抗干扰性差,在无线信号环境复杂的情况下几乎不可以使用。
(3)4G/5G移动物联网技术
利用运营商提供的4G/5G无线移动网络,可实现视频图像高质量地传输。
(4)卫星通信技术
依靠传统的通信卫星或高通量卫星技术,视频终端通过卫星传输通道实现点对点的通信。
各类无线视频监控技术的优缺点可归纳如下:
二、技术分析
为实现无人区输电线线路视频监控、在线监测等业务信息回传,可采用WLAN(无线局域网)、卫星通信技术等。
(一)WLAN(无线局域网)
目前,Mesh组网和WDS组网均能实现两个无线接入节点之间的无线链路通信,实现无线网络的扩展,可广泛应用于无线视频监控回传网络中,各组网特性分析如下:
(1)WDS组网
WDS组网通过无线网桥连接两个独立的局域网段。WDS组网结构包含点对点、点对多点。
目前无线网桥设备可实现点对点10km以上的远距离传输,实际数据吞吐量不低于200Mbps,整机功率小于20W。在整个组网中无线网桥根据节点作用的不同可实现不同的工作模式:在覆盖场景下支持AP(基站)工作模式、在接入场景下支持CPE(客户端)工作模式、在回传场景下支持WDS工作模式。
(2)Mesh组网
图1 典型Mesh组网架构
在Mesh网络中,如果某个节点的AP发生故障,它可以重新再选择一个AP进行通信,数据仍然可以高速地到达目的地,可以有效避免单点故障,所以Mesh网络比WDS网络更加稳定。
Mesh组网虽然便捷灵活,但整体链路带宽较低并且开销较大,在链路较长、跳接数量较多的情况下无法保障数据的正常传输。
(3)Mesh组网与WDS组网的对比
(二)卫星通信技术
国内卫星通信主要采用传统的Ku卫星和高通量通信卫星,其中高通量通信卫星主要是位于地球同步轨道的中星16号卫星、亚太6D卫星。目前中星16号卫星已实现商用,亚太6D卫星还处在在轨试运行阶段。“中星16号”卫星单站下载和回传速率最高可达150Mbps和12Mbps,单站整机功率约为40W左右。
由于卫星远端站最大回传速率较低、“南山效应”、功耗较高等问题制约了其在输电线路视频回传业务的广泛应用。但卫星远端站可作为无线回传网络上监测点零星补点的手段,也可结合Wi-Fi桥接技术,在输电线路或变电站巡检、应急救援时提供近程的通信覆盖,并且可配置COFDM图传设备将无人机自主巡检时视频画面通过卫星通道实现实时回传。
三、应用场景
按照某输电线路无网络覆盖的情况,可分为以下两种场景进行监控信号回传方案的设计:
场景一:整条输电线路无网络覆盖的区域零散、无网络覆盖区间范围较短。无网络覆盖区域可通过Mesh组网或WDS组网搭建的无线链路将业务信息汇聚至具备运营商信号的电力铁塔,通过4G CPE设备接入运营商电力无线专网APN通道回传至监控中心。
图2 场景一组网架构(示例)
场景二:输电线路无网络覆盖区域较广。无网络覆盖区域通过Mesh组网或WDS组网搭建的无线链路将业务信息直接回传至就近变电站(就近变电站是指据输电线路较近的变电站)。但其能够实现的网络覆盖距离会受制于设备的带宽、组网主链路跳接次数等,需根据实际的变电站两站之间的距离、需观察的点位数量等做进一步的业务模型分析。
图3 场景二组网架构(示例)
对于Mesh组网或WDS组网架构的选择需根据实际输电线路沿线观测点数量和点位位置进行部署,总体组网拓扑为主链路采用(汇聚节点间)多跳接力(桥接)的方式,汇聚节点采用点对多点实现近程覆盖。而因延时或受带宽限制使得采用上述两种组网架构的最优化情况下仍然存在无法回传的监测点位,可采用卫星通信技术作为补点的手段,从而实现输电线路无网络覆盖区域监测点位监控信息的回传。
四、无线传输拓扑图
图4 单链路多跳桥接传输拓扑图
在户外电力铁塔间无遮挡情况下,可通过网桥间多跳桥接方式构建传输链路,传输各种视频信号。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。
图5 点对多点桥接传输拓扑图
在户外电力铁塔间无遮挡情况下,前端的两个或多个铁塔可通过点对多点方式将采集的信息传输到一个铁塔上,然后再通过网桥间多跳桥接方式构建的传输链路将汇总的信息回传。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。
图6 桥接加mesh组网传输拓扑图
在户外电力铁塔间无遮挡情况下,可通过网桥间多跳桥接方式构建传输链路,传输各种视频信号。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。当其中三个或多个铁塔间均无遮挡时,可设置mesh组网,增强链路抗毁性,保证链路可靠性。
图7 多链路多跳桥接传输拓扑图
在户外电力铁塔间有遮挡情况下,部分无遮挡铁塔间可通过网桥间多跳桥接方式构建传输链路,传输各种视频信号,有遮挡的铁塔无法直接回传时,可根据现场情况选择附近其他铁塔进行回传。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。
转载注明:http://www.crashoverall.net